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Abstract -- In this paper, the bit error prob-

ability Pb for maximum likelihood decoding of

binary linear codes is investigated. The con-

tribution of each information bit to Pb is con-

sidered. For randomly generated codes, it is

shown that the conventional abproximation at

high SNR Pb _ (dH/N) • P_, where P, represents

the block error probability, holds for systematic

encoding only. Also systematic el_coding pro-
vides the minimum Pb when the inverse map-

ping corresponding to the generator matrix of
the code is used to retrieve the information

sequence. The bit error performances corre-

sponding to other generator matrix forms are

also evaluated. Although derived for codes with

a generator matrix randomly generated, these

results are shown to provide good approxima-
tions for codes used in practice. Finally, for de-

coding methods which require a generator ma-

trix with a particular structure such as trellis

decoding or algebraic-based soft decision decod-

ing, equivalent schemes that reduce the bit er-

ror probability are discussed.

I. INTRODUCTION

In thispaper, we considerthe minimization ofthe bit

error probability Pb for maximum likelihood decoding
(MLD) of linear block codes. Although not optimum,

this minimization remains important as MLD has been

widely used in practical applications. We assume that

the information sequence of length K is recovered from

the decoded codeword based on the inverse mapping

defined from the generator matrix of the code. For

block codes, the large error coefficients can justify this

strategy which is explicitly or implicitly used in many

decoding methods such as conventional trellis decod-

ing, multi-stage decoding or majority-logic-decoding.

Therefore, for a particular code and the same optimal
block error probability, we determine the best encod-

ing method for delivering as few erroneous informa-

tion bits as possible whenever a block is in error at

the decoder output. We first derive a general upper

bound on Pb which applies to any generator matrix

and is tight at medium to high signal to noise ratio

(SNR). This bound considers the individual contribu-

tion of each information bit separately. For randomly
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generated codes, we then show that the systematic gen-

erator matrix (SGM) provides the minimum bit error

probability. To this end, a submatrix of the generator

matrix defining an equivalent code for the bit consid-

ered is introduced. Note that a similar general result

holds for the optimum bit error probability related to

the BSC [2]. We finally discuss how to achieve this per-

formance whenever the systematic encoding is not the

natural choice, as for trellis decoding [3] or for MLD in
conjunction with algebraic decoding [4]-[8]. For exam-

ple, for trellis decoding of the (32,26,4) Reed-Muller

(RM) code, at low SNR a performance degradation of
more than 1 dB is recovered with the proposed method.

Minimizing the bit error probability associated with

MLD becomes even more important whenever the con-
sidered block code is used as the inner code of a con-

catenated coding system [9].

It. BIT ERROR PROBABILITY FOR MLD

Suppose an (N, K, dH) binary linear code C with gener-
ator matrix G is used for error control over the A\VGN

channel. Defining

1 g

Pb = _ _ Pb(j), (1)
j=l

where Pb(j) represents the error probability for the j.h
bit in a block of N information bits delivered by the

decoder, we obtain from the union bound

N

i=dH

where Q(z) = (,'rNo) -1/_" f_¢ e-n=/'_°dn. We call _d(j)
the effective error coefficient associated with the

jth information bit with respect to the genera-
tor matrix G.

We can prove the following theorem.

Theorem 1 Let wi represent the number of codewords

of weight i in the code C generated by G and let wi(j)

represent the number of codewords of weight i in the

subcode generated by the matrix: G(j) obtained after

deleting row-j in G; then

_bi(j) = tc, - wi(j). (3)

Theorem 1 depends on the mapping defined by G as

it implicitly assumes that the inverse mapping corre-

sponding to G is used to retrieve the information bits



from the decodedcodesequence.Sincefor a linear
code,thismappingis one-to-oneandthusinvertible,
Theorem1 is validfor anyrepresentationof G, sys-

tematic as well as non-systematic. Combining (1) and
(2), the average bit error probability is expressed as

<- E -KE 0 , (4)
i=dt.t j=t

For a code defined by a matrix G randomly generated,

we associate with each information bit j E [1, K] a
matrix

oo,;,= 1],
where _. and I_-t represent the all-1 vector and the

identity matrix of dimension _ - 1 respectively. The
matrix D_(j) is defined as the dependency matrix

associated with dimension j of the generator

matrix G. This matrix allows to derive the following
theorem.

Theorem 2 Let consider an (N, K) linear block code
C with a generator matrix generated randomly. Then

the value ffvi(j) corresponding to the dimension j with

dependency matrix D_(j) is well approzimated by

 i(j) 2 -(u-m Zl+l i-(2t+l) ' (6)
/=0

Theorem 2 indicates that the larger cr. the larger the

corresponding Pb(j). Consequently, c_ = 1 gives the

smallest bit error probability. For this case, Dt = [1]

which corresponds to a systematic encoding. There-
fore, the optimum bit error probability for MLD at

medium to high SNR is achieved by a systematic en-

coding if ;he inverse-mapping defined by G is used to

retrieve the information bits. This strategy is intu-
itively correct since whenever a code sequence esti-

mated by the decoder is in error, the best strategy
to recover the information bits is simply to determine

them independently. Otherwise, errors propagate. For
ot = 1, (6) becomes [1]

(N-I_
tbi(j) _ 2 -_x-K) \ i - 1 ] _ (i/N) wl. (7)

In that case only, at high SNR, the bit error probability
for MLD follows

For Reed-Muller (RM) codes of length N _< 64, we

computed the ratios Wan (J)/wdn corresponding to (6)

for various forms of generator matrices. In all cases, the

value computed from (6) is the exact ratio, although
the weight distribution of RM codes is far from a bi-
nomial distribution.

III. APPLICATIONS

A. ML trellis decoding

ML trellis decoding is based on the trellis oriented gen-

erator matrix (TOGM) of the code considered [3]. If

this matrix is used for encoding, trellis decoding be-

comes suboptimum with respect to the bit error prob-
ability of MLD. \Ve present a simple method to over-
come this problem.

Let Gt denote the TOGM of the code C_. Then, by

row additions only, it is possible to obtain the gener-
ator matrix G of an equivalent code C which contains

the K columns of the identity matrix. This matrix is

known as the reduced echelon form (REF). These op-
erations modify the mapping between information bits

and codewords, but since no column permutation has

been realized, each codeword of C is still uniquely rep-
resented by a path in the trellis of Ct. Therefore ML

trellis decoding of the received sequence is still possible

if we use G for encoding. The trellis decoder estimates

the code sequence which is closest to the received se-

quence. Then the information bits are easily retrieved

due to the systematic nature of G. Since no restric-
tions on Gt apply, the matrix G can be obtained for

any possible trellis decomposition.

In [10], a specific ML trellis decoding algorithm for

the (63,57,3) Hamming code is proposed. The decod-

ing is realized based on a generator matrix in cyclic

form. It is also shown that an equivalent systematic

representation outperforms the cyclic form by 0.4 dB

at the BEIZ 10 -5. However, the decoding of the sys-

tematic code requires an additional step. By process-
ing the generator matrix in cyclic form as described in

this section, this additional step can be removed as the

encoding matrix becomes G = [I._rP6]. On the other
hand, the cyclic structure no longer exits, but the en-

coder remains very simple.

Figures 1 and 2 depict the simulation results for the

(32,16,8) and (32,26,4) RM-codes respectively. For

both codes, we simulated ML decoding based on the

REF and the conventional TOGM described in [3], and
plotted the first term of the union bound derived from

(4). As expected from the results of Section II, we ob-

serve a larger gap in error performance for the (32,26,4)

RM-code. At the bit error rate (BER) 10 -6, the gap in

performance for this code is about 0.2 dB, which is of
the same order as the difference between closest coset

decoding (CCD) and ML trellis decoding [11]. Also,

we observe a much significant gap at high BER of 0.4

dB for the (32,16,8) code and 1.1 dB for the (32,26,4)
code. This behavior becomes important if a concate-
nated coding scheme is used.

The extension of this method to multi-stage trellis

decoding does not follow in a straightforward way. In

general, multi-stage decoding methods exploit the de-
composable structure of the code considered, so that

row additions on the associated generator matrix can



destroythisstructure.Forexample,CCDof lulu + v]-
constructed codes exploits the repetition of the u-

component code [11]. As a result, row additions in each

component code generator matrix are allowed, but not
from one matrix to the other. In addition, the propa-

gation of decoding errors between decoding stages also
has to be considered when searching for the optimum

encoding matrix associated with multi-stage decoding.

B. MLD in conjunction with algebraic decoding

Several soft decision decoding algorithms in conjunc-

tion with an algebraic decoder have been proposed [4]-

[8]. In general, algebraic decoding is associated with a
particular generator matrix form G_. Therefore, if this
form is used for encoding, the corresponding algorithm

becomes suboptimum with respect the bit error prob-

ability of MLD. Algebraic decoding algorithms can be
divided into two classes, depending on whether the de-

coder delivers an estimate of the transmitted codeword

of length N or of the information sequence of length
K. In the first case, the method of Section A extends

in a straightforward fashion. Hence decoding of cyclic
codes can be realized this way. However, a similar

method is also possible for the second class of algebraic

decoders. Again, this method is transparent with re-

spect to algebraic decoding, so that the conventional

algebraic decoder corresponding to the code consid-
ered can still be used. This method simply consists

of recording the row operations processed to obtain G
in REF form G_ and applying the inverse operations

to the information sequence delivered by the algebraic

decoder.

Figure 3 depicts the improvement achieved by this
method for Chase algorithm-2 with majority-logic-

decoding for the (64,42,8) RM-¢ode. The proposed

method outperforms Chase algorithm-2 with conven-

tional majority-logic-decoding by 0.15 dB at the BEI_
lO -s.

C. Concatenated coding

We consider the concatenated scheme presented in [12]

where the inner code is a (64,40) subcode of the (64,42)

KM code and the outer code is the NASA standard

(255,223) RS code over GF(2S). The outer code is in-
terleaved to a depth of 5. For this scheme, Figure 4

represents the simulated bit error performance for en-

coding with the TOGM and tile REF. We observe that

the systematic encoding outperforms the TOGM by
about 0.2 dB at the BER. 10 -5. More importantly, we

also notice that while the error performance curves cor-

responding to the inner codes differ by a constant value
due to different error coefficients, the difference in bit

error probability between the error performance curves

corresponding to the concatenated system increases as
the SNR increases.

IV. CONCLUSION

In this paper, we have showed that for many good

codes, the SGM provides the best bit error probabil-

ity for MLD when the inverse mapping of the gener-
ator matrix G is used to retrieve the information se-

quence. Based on the presented results, we can con-
clude that a careful choice of the generator matrix be-

comes important when comparing different optimum,

near-optimum or suboptimum soft decision decoding
schemes. Generally, tenths of dB's separate the bit er-

ror performance of such schemes, so that a poor choice

of the generator matrix of one of the scheme may result

in an important relative degradation.

By exploiting the fact that modifying the mapping
between information bits and codewords is transpar-

ent to the decoder, we modified conventional trellis

decoding and MLD in conjunction with an algebraic
decoder so that these schemes achieve the same bit

error performance as for systematic encoding. Hence

the decoding becomes independent of the encoding and

can simply be viewed as a process providing the most

likely codeword of the codebook. As a result, the de-
coder structure remains the same as the conventional

one but in some cases the decoded sequence requires

an additional simple reprocessing.
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Figure 1: Simulated and theoretical bit error probabil-

ities for the (32,16,8) RM code with TOGM and REF.
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Figure 2: Simulated and theoretical bit error probabil-
ities for the (32,26,4) RM code with TOGM and REF.
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Figure 3: Simulated bit error probabilities for Chase

algorithm-2 of the (64,42,8) RM code with majority-
logic-decoding in Boolean and systematic forms.
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Figure 4: Simulated bit error probabilities for

(255,223) RS outer code and (64,40,8) inner code, and

encoding with REF and TOGM.


